organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(3-Morpholinopropyl)-2,3-dihydro-1Hpyrrolo[3,4-b]quinolin-1-one monohydrate

Yu-Hua Long,* Ting Zhou, Ding-Qiao Yang, Wen-Ling Wang and Han-Mei Zhang

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China Correspondence e-mail: yuhualong68@hotmail.com

Received 7 November 2010; accepted 10 November 2010

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.057; wR factor = 0.144; data-to-parameter ratio = 13.1.

In the title compound, $C_{18}H_{21}N_3O_2 \cdot H_2O$, the fused-ring system is approximately planar [maximum atomic deviation = 0.028 (3) Å]; the morpholine ring displays a chair conformation. The crystal packing is stabilized by classical intermolecular O-H···O and O-H···N hydrogen bonds and weak C-H···O hydrogen bonds between the organic molecules and the water molecules.

Related literature

For the properties and biological activity of quinoline derivatives, see: Vaitilingam et al. (2004); Lee et al. (2004); Zwaagstra et al. (1998); Roma et al. (2000); Ferrarini et al. (2000). For the preparation of quinoline derivatives, see: Zhou et al. (2010); Yang et al. (2008).

Experimental

Crystal data C18H21N3O2·H2O $M_{\rm m} = 329.39$ Orthorhombic, Pbca a = 7.0107 (16) Å

<i>b</i> = 12.655 (3) Å
c = 37.609 (9) Å
V = 3336.7 (13) Å
Z = 8

Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$	T = 296 K $0.30 \times 0.28 \times 0.27 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD area- detector diffractometer 15458 measured reflections	2943 independent reflections 1864 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.067$
Refinement	
$R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.144$ S = 1.04 2943 reflections 225 parameters 3 restraints	H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\text{max}} = 0.28 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.41 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01W - H1W \cdots N3^{i}$ $01W - H2W \cdots O1^{ii}$ $C11 - H11B \cdots O1W$	0.86 (4)	2.15 (4)	2.961 (4)	155 (4)
	0.87 (4)	1.98 (4)	2.843 (3)	174 (4)
	0.97	2.47	3.326 (4)	147

of

Symmetry codes: (i) x + 1, y, z; (ii) $-x + \frac{1}{2}$, $y - \frac{1}{2}$, z.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

We are grateful to the National Natural Science Foundation of China (grant No. 20802021) and the Natural Science Foundation of Guangdong Province, China (grant No. 825106310100002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5085).

References

- Ferrarini, P. L., Mori, C., Badawneh, M., Calderonem, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Med. Chem. 35, 815-826.
- Lee, B. D., Li, Z., French, K. J., Zhuang, Y., Xia, Z. & Smith, C. D. (2004). J. Med. Chem. 47, 1413-1422.
- Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1035.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
- Vaitilingam, B., Nayyar, A., Palde, P. B., Monga, V., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem. 12, 4179-4188.
- Yang, D.-Q., Guo, W., Cai, Y.-P., Jiang, L.-S., Jiang, K.-L. & Wu, X.-B. (2008). Heteroat. Chem. 19, 229-233.
- Zhou, T., Long, Y., Yang, D., Zhang, H. & Wang, W. (2010). Acta Cryst. E66, 02155
- Zwaagstra, M. E., Timmerman, H., Van De Stolpe, A. C., De Kanter, F. J., Tamura, M., Wada, Y. & Zhang, M.-Q. (1998). J. Med. Chem. 41, 1428-1438.

Acta Cryst. (2010). E66, o3180 [doi:10.1107/S1600536810046349]

2-(3-Morpholinopropyl)-2,3-dihydro-1*H*-pyrrolo[3,4-*b*]quinolin-1-one monohydrate

Y.-H. Long, T. Zhou, D.-Q. Yang, W.-L. Wang and H.-M. Zhang

Comment

Quinoline analogues have been reported to display promising antibacterial (Vaitilingam *et al.*, 2004), an-ticancer and antiplatelet (Lee *et al.*, 2004), antiasthmatic (Zwaagstra *et al.*, 1998), antiinflammatory (Roma *et al.*, 2000), and antihypertensive activities (Ferrarini *et al.*, 2000). We have synthesized some new quinoline derivatives (Yang *et al.*, 2008). In continuation of our efforts to develop quinoline derivatives with a new structure-activity relationship, herein, we report the synthesis and structure determination the title compound.

The molecular geometry and the atom-labeling scheme of the title compound is illustrated in Fig. 1. The molecule contains three approximately coplanar rings and the dihedral angle between the three rings 1.60 (2)° and 1.20 (5)°, respectively; the C—N2—C—C torsion angles are 43.59° and -137.51°; the morpholine ring shows a stable chair conformation. The crystal structure can be depicted as layers along a-axis which ring systems are parallel to one another. The crystal packing is stabilized by intermolecular interactions between O and H atoms [C—H···O = 2.638Å].

Experimental

The precursor, ethyl 2-(bromomethyl)quinoline-3-carboxylate, was prepared according to the literature procedure (Yang *et al.*, 2008; Zhou *et al.*, 2010). The title compoud was synthesized by treating 1 mmol of ethyl 2-(bromomethyl)quinoline-3-carboxylate with 1.2 mmol of 3-morpholinopropan-1-amine in the presence of NaHCO₃ in acetonitrile. The reaction was carried out under the stirring at room temperature for 10 h. Once the reaction was complete, the solid salt was filtered off and the filtrate was then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with the mixture of methanol and ethyl acetate (v/v = 1/20) to afford the white product. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solution of petroleum ether and dichloromethane, in which the small amount of water was not removed.

Refinement

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. Molecular structure of the title compound showing atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

2-(3-Morpholinopropyl)-2,3-dihydro-1*H*-pyrrolo[3,4-b]quinolin-1-one monohydrate

Crystal data	
$C_{18}H_{21}N_3O_2{\cdot}H_2O$	F(000) = 1408.0
$M_r = 329.39$	$D_{\rm x} = 1.311 { m Mg m}^{-3}$
Orthorhombic, Pbca	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 1868 reflections
a = 7.0107 (16) Å	$\theta = 3.1 - 20.4^{\circ}$
b = 12.655 (3) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 37.609 (9) Å	<i>T</i> = 296 K
$V = 3336.7 (13) \text{ Å}^3$	Block, colorless
<i>Z</i> = 8	$0.30\times0.28\times0.27~mm$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	1864 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.067$
graphite	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
φ and ω scans	$h = -8 \rightarrow 7$
15458 measured reflections	$k = -15 \rightarrow 14$
2943 independent reflections	$l = -44 \rightarrow 41$

Refinement

Refinement on F^2
Least-squares matrix: full
$R[F^2 > 2\sigma(F^2)] = 0.057$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.144$	H atoms treated by a mixture of independent and constrained refinement
<i>S</i> = 1.04	$w = 1/[\sigma^2(F_o^2) + (0.0611P)^2 + 1.0475P]$ where $P = (F_o^2 + 2F_c^2)/3$
2943 reflections	$(\Delta/\sigma)_{max} < 0.001$
225 parameters	$\Delta \rho_{max} = 0.28 \text{ e} \text{ Å}^{-3}$
3 restraints	$\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotro	pic or equivalent isotrop	pic displacement	parameters (.	(A^2)
	1 1 1			

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
N1	0.1806 (3)	0.84470 (14)	0.25789 (5)	0.0447 (5)
01	0.1534 (3)	1.07919 (12)	0.35666 (4)	0.0547 (5)
N2	0.1728 (3)	0.89892 (13)	0.35114 (5)	0.0406 (5)
N3	-0.1048 (3)	0.66704 (14)	0.44146 (5)	0.0431 (5)
O2	-0.2365 (3)	0.47670 (15)	0.47362 (5)	0.0807 (7)
C6	0.1586 (3)	1.02874 (17)	0.23807 (6)	0.0401 (6)
C5	0.1701 (3)	0.91850 (17)	0.23121 (6)	0.0402 (6)
C4	0.1701 (4)	0.8838 (2)	0.19565 (6)	0.0509 (7)
H4	0.1744	0.8119	0.1907	0.061*
C1	0.1522 (4)	1.09912 (19)	0.20898 (7)	0.0519 (7)
H1	0.1446	1.1714	0.2132	0.062*
C3	0.1638 (4)	0.9544 (2)	0.16832 (7)	0.0561 (7)
Н3	0.1642	0.9301	0.1450	0.067*
C2	0.1569 (4)	1.0629 (2)	0.17496 (7)	0.0582 (7)
H2	0.1554	1.1104	0.1561	0.070*
С9	0.1791 (3)	0.88333 (16)	0.29006 (6)	0.0386 (6)
C8	0.1644 (3)	0.99006 (16)	0.29942 (5)	0.0371 (6)
C10	0.1624 (3)	0.99828 (17)	0.33838 (6)	0.0399 (6)
C7	0.1545 (3)	1.06426 (17)	0.27334 (6)	0.0416 (6)
H7	0.1454	1.1358	0.2787	0.050*
C11	0.1741 (4)	0.87224 (18)	0.38875 (6)	0.0445 (6)
H11A	0.1305	0.9325	0.4025	0.053*
H11B	0.3034	0.8560	0.3961	0.053*
C13	0.0266 (4)	0.75468 (17)	0.43519 (6)	0.0443 (6)
H13A	0.1507	0.7370	0.4450	0.053*

-0.0197	0.8171	0.4474	0.053*
0.0472 (4)	0.77880 (18)	0.39619 (6)	0.0454 (6)
0.0990	0.7172	0.3843	0.054*
-0.0781	0.7924	0.3863	0.054*
-0.1663 (5)	0.4788 (2)	0.43826 (7)	0.0720 (9)
-0.2717	0.4900	0.4220	0.086*
-0.1090	0.4111	0.4327	0.086*
-0.1709 (5)	0.6639 (2)	0.47821 (7)	0.0656 (9)
-0.2290	0.7310	0.4844	0.079*
-0.0636	0.6521	0.4940	0.079*
-0.0214 (4)	0.56444 (18)	0.43321 (7)	0.0547 (7)
0.0871	0.5517	0.4486	0.066*
0.0234	0.5641	0.4088	0.066*
-0.3143 (5)	0.5764 (2)	0.48256 (9)	0.0875 (12)
-0.3581	0.5748	0.5070	0.105*
-0.4237	0.5905	0.4675	0.105*
0.1877 (4)	0.81867 (18)	0.32341 (6)	0.0467 (6)
0.0826	0.7690	0.3246	0.056*
0.3072	0.7803	0.3251	0.056*
0.5672 (4)	0.72672 (19)	0.39612 (10)	0.1179 (11)
0.638 (6)	0.695 (3)	0.4116 (10)	0.17 (2)*
0.506 (6)	0.678 (3)	0.3845 (11)	0.20 (2)*
	$\begin{array}{c} -0.0197\\ 0.0472\ (4)\\ 0.0990\\ -0.0781\\ -0.1663\ (5)\\ -0.2717\\ -0.1090\\ -0.1709\ (5)\\ -0.2290\\ -0.0636\\ -0.0214\ (4)\\ 0.0871\\ 0.0234\\ -0.3143\ (5)\\ -0.3581\\ -0.4237\\ 0.1877\ (4)\\ 0.0826\\ 0.3072\\ 0.5672\ (4)\\ 0.638\ (6)\\ 0.506\ (6)\\ \end{array}$	-0.0197 0.8171 $0.0472 (4)$ $0.77880 (18)$ 0.0990 0.7172 -0.0781 0.7924 $-0.1663 (5)$ $0.4788 (2)$ -0.2717 0.4900 -0.1090 0.4111 $-0.1709 (5)$ $0.6639 (2)$ -0.2290 0.7310 -0.0636 0.6521 $-0.0214 (4)$ $0.56444 (18)$ 0.0871 0.5517 0.0234 0.5641 $-0.3143 (5)$ $0.5764 (2)$ -0.3581 0.5748 -0.4237 0.5905 $0.1877 (4)$ $0.81867 (18)$ 0.0826 0.7690 0.3072 0.7803 $0.5672 (4)$ $0.72672 (19)$ $0.638 (6)$ $0.678 (3)$	-0.0197 0.8171 0.4474 0.0472 (4) 0.77880 (18) 0.39619 (6) 0.0990 0.7172 0.3843 -0.0781 0.7924 0.3863 -0.1663 (5) 0.4788 (2) 0.43826 (7) -0.2717 0.4900 0.4220 -0.1090 0.4111 0.4327 -0.1709 (5) 0.6639 (2) 0.47821 (7) -0.2290 0.7310 0.4844 -0.0636 0.6521 0.4940 -0.0214 (4) 0.56444 (18) 0.43321 (7) 0.0871 0.5517 0.4486 0.0234 0.5641 0.4088 -0.3143 (5) 0.5764 (2) 0.48256 (9) -0.3581 0.5700 0.4675 0.1877 (4) 0.81867 (18) 0.32341 (6) 0.0826 0.7690 0.3246 0.3072 0.7803 0.3251 0.5672 (4) 0.72672 (19) 0.39612 (10) 0.638 (6) 0.695 (3) 0.4116 (10) 0.506 (6) 0.678 (3) 0.3845 (11)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0601 (15)	0.0386 (10)	0.0354 (11)	0.0044 (10)	-0.0005 (9)	0.0000 (8)
01	0.0741 (14)	0.0385 (9)	0.0515 (10)	-0.0030 (8)	0.0045 (9)	-0.0100 (8)
N2	0.0512 (13)	0.0360 (10)	0.0346 (10)	-0.0028 (9)	0.0013 (9)	-0.0007 (8)
N3	0.0506 (13)	0.0402 (11)	0.0384 (11)	-0.0036 (9)	0.0092 (9)	-0.0022 (8)
O2	0.120 (2)	0.0528 (12)	0.0695 (13)	-0.0217 (12)	0.0372 (13)	-0.0008 (9)
C6	0.0372 (15)	0.0409 (13)	0.0424 (13)	-0.0019 (11)	-0.0023 (11)	0.0071 (10)
C5	0.0361 (14)	0.0451 (14)	0.0393 (13)	0.0026 (11)	-0.0004 (11)	0.0037 (10)
C4	0.0583 (18)	0.0533 (15)	0.0410 (14)	0.0107 (13)	-0.0017 (12)	0.0002 (12)
C1	0.0547 (18)	0.0467 (14)	0.0543 (16)	-0.0010 (12)	-0.0034 (13)	0.0114 (12)
C3	0.0527 (18)	0.0750 (19)	0.0406 (14)	0.0123 (14)	-0.0010 (12)	0.0058 (13)
C2	0.0565 (19)	0.0665 (18)	0.0517 (17)	0.0026 (14)	-0.0005 (14)	0.0192 (13)
C9	0.0429 (15)	0.0352 (12)	0.0378 (13)	0.0001 (10)	0.0004 (11)	0.0005 (10)
C8	0.0382 (14)	0.0332 (12)	0.0400 (13)	-0.0036 (10)	0.0025 (11)	-0.0001 (9)
C10	0.0389 (14)	0.0363 (13)	0.0444 (14)	-0.0037 (10)	0.0019 (11)	-0.0029 (10)
C7	0.0445 (16)	0.0338 (12)	0.0465 (14)	-0.0035 (11)	-0.0017 (12)	-0.0003 (10)
C11	0.0495 (16)	0.0495 (14)	0.0346 (13)	-0.0068 (12)	-0.0018 (11)	0.0005 (10)
C13	0.0513 (16)	0.0429 (13)	0.0387 (13)	-0.0055 (12)	-0.0027 (11)	0.0000 (10)
C12	0.0519 (17)	0.0450 (14)	0.0393 (13)	-0.0069 (12)	-0.0013 (11)	0.0015 (10)
C15	0.096 (3)	0.0501 (16)	0.070 (2)	-0.0123 (16)	0.0266 (18)	-0.0086 (14)
C17	0.091 (2)	0.0552 (16)	0.0503 (16)	-0.0108 (16)	0.0242 (15)	-0.0076 (12)
C14	0.068 (2)	0.0441 (14)	0.0522 (15)	0.0011 (13)	0.0158 (14)	0.0000 (11)
C16	0.114 (3)	0.062 (2)	0.086 (2)	-0.0226 (19)	0.054 (2)	-0.0117 (16)

C18	0.0626 (18)	0.0372 (13)	0.0402 (13)	-0.0027 (12)	0.0009 (12)	-0.0006 (10)
O1W	0.091 (2)	0.0689 (15)	0.194 (3)	0.0150 (14)	-0.066 (2)	-0.0318 (18)
Geometric param	neters (Å, °)					
N1—C9		1.305 (3)	C8—	C10	1.46	59 (3)
N1—C5		1.373 (3)	С7—	H7	0.93	600
O1—C10		1.235 (3)	C11–	C12	1.50	06 (3)
N2-C10		1.348 (3)	C11—H11A		0.97	700
N2-C11		1.454 (3)	C11–	-H11B	0.97	700
N2-C18		1.460 (3)	C13-	C12	1.50	05 (3)
N3—C14		1.458 (3)	C13-	-H13A	0.97	700
N3—C17		1.458 (3)	C13-	-H13B	0.97	/00
N3—C13		1.461 (3)	C12-	-H12A	0.97	700
O2—C15		1.418 (3)	C12-	-H12B	0.97	700
O2—C16		1.415 (4)	C15–	C14	1.49	98 (4)
С6—С7		1.401 (3)	C15-	-H15A	0.97	700
C6—C1		1.411 (3)	C15-	-H15B	0.97	/00
C6—C5		1.421 (3)	C17-	C16	1.50	05 (4)
C5—C4		1.408 (3)	C17-	-H17A	0.97	/00
C4—C3		1.362 (3)	C17-	-H17B	0.97	700
C4—H4		0.9300	C14-	-H14A	0.97	/00
C1—C2		1.360 (3)	C14-	-H14B	0.97	/00
C1—H1		0.9300	C16–	-H16A	0.97	/00
C3—C2		1.397 (4)	C16–	-H16B	0.97	700
С3—Н3		0.9300	C18–	-H18A	0.97	/00
С2—Н2		0.9300	C18–	-H18B	0.97	700
С9—С8		1.400 (3)	O1W-	—H1W	0.86	6 (4)
C9—C18		1.499 (3)	O1W-	—H2W	0.87	' (4)
С8—С7		1.360 (3)				
C9—N1—C5		114.99 (18)	N3—	C13—C12	111.	82 (18)
C10—N2—C11		124.29 (19)	N3—	C13—H13A	109	.3
C10—N2—C18		113.48 (18)	C12–	-C13—H13A	109	.3
C11—N2—C18		122.21 (17)	N3—	С13—Н13В	109	.3
C14—N3—C17		107.80 (19)	C12-	C13H13B	109	.3
C14—N3—C13		112.86 (19)	H13A	—С13—Н13В	107	.9
C17—N3—C13		111.95 (18)	C11–	-C12-C13	113	.39 (19)
C15—O2—C16		109.9 (2)	C11–	-C12-H12A	108	.9
C7—C6—C1		122.1 (2)	C13-	-C12-H12A	108	.9
С7—С6—С5		119.21 (19)	C11–	-C12-H12B	108	.9
C1—C6—C5		118.7 (2)	C13-	-C12-H12B	108	.9
N1—C5—C4		118.8 (2)	H12A	—С12—Н12В	107	.7
N1—C5—C6		122.6 (2)	O2—	C15—C14	111.	6 (2)
C4—C5—C6		118.6 (2)	02—	C15—H15A	109	.3
C3—C4—C5		120.8 (2)	C14–	-C15-H15A	109	.3
C3—C4—H4		119.6	02—	С15—Н15В	109	.3
С5—С4—Н4		119.6	C14-	-C15-H15B	109	.3
C2—C1—C6		121.1 (2)	H15A	—С15—Н15В	108	.0
C2—C1—H1		119.5	N3—	C17—C16	109	.6 (2)

C6—C1—H1	119.5	N3—C17—H17A	109.8
C4—C3—C2	120.7 (2)	С16—С17—Н17А	109.8
С4—С3—Н3	119.6	N3—C17—H17B	109.8
С2—С3—Н3	119.6	С16—С17—Н17В	109.8
C1—C2—C3	120.0 (2)	H17A—C17—H17B	108.2
C1—C2—H2	120.0	N3—C14—C15	110.2 (2)
С3—С2—Н2	120.0	N3—C14—H14A	109.6
N1—C9—C8	126.5 (2)	C15—C14—H14A	109.6
N1—C9—C18	124.83 (19)	N3—C14—H14B	109.6
C8—C9—C18	108.63 (18)	C15—C14—H14B	109.6
С7—С8—С9	119.3 (2)	H14A—C14—H14B	108.1
C7—C8—C10	132.08 (19)	O2-C16-C17	111.9 (3)
C9—C8—C10	108.65 (18)	O2-C16-H16A	109.2
O1—C10—N2	125.3 (2)	С17—С16—Н16А	109.2
O1—C10—C8	127.9 (2)	O2-C16-H16B	109.2
N2-C10-C8	106.78 (18)	С17—С16—Н16В	109.2
C8—C7—C6	117.4 (2)	H16A—C16—H16B	107.9
С8—С7—Н7	121.3	N2—C18—C9	102.43 (17)
С6—С7—Н7	121.3	N2-C18-H18A	111.3
N2-C11-C12	111.07 (18)	C9—C18—H18A	111.3
N2—C11—H11A	109.4	N2-C18-H18B	111.3
C12—C11—H11A	109.4	C9—C18—H18B	111.3
N2—C11—H11B	109.4	H18A—C18—H18B	109.2
C12—C11—H11B	109.4	H1W—O1W—H2W	107 (4)
H11A—C11—H11B	108.0		
C9—N1—C5—C4	-179.8 (2)	C7—C8—C10—N2	179.0 (3)
C9—N1—C5—C6	0.1 (3)	C9—C8—C10—N2	-0.9 (3)
C7—C6—C5—N1	-1.1 (4)	C9—C8—C7—C6	0.4 (3)
C1—C6—C5—N1	178.7 (2)	C10-C8-C7-C6	-179.5 (2)
C7—C6—C5—C4	178.7 (2)	C1—C6—C7—C8	-179.0 (2)
C1—C6—C5—C4	-1.4 (3)	C5—C6—C7—C8	0.8 (3)
N1—C5—C4—C3	-178.7 (2)	C10-N2-C11-C12	137.0 (2)
C6—C5—C4—C3	1.5 (4)	C18—N2—C11—C12	-44.5 (3)
C7—C6—C1—C2	179.8 (2)	C14—N3—C13—C12	75.8 (3)
C5—C6—C1—C2	0.0 (4)	C17—N3—C13—C12	-162.4 (2)
C5—C4—C3—C2	-0.1 (4)	N2-C11-C12-C13	-173.9 (2)
C6—C1—C2—C3	1.5 (4)	N3-C13-C12-C11	177.1 (2)
C4—C3—C2—C1	-1.4 (4)	C16—O2—C15—C14	56.8 (4)
C5—N1—C9—C8	1.3 (4)	C14—N3—C17—C16	-58.6 (3)
C5—N1—C9—C18	179.5 (2)	C13—N3—C17—C16	176.7 (2)
N1—C9—C8—C7	-1.6 (4)	C17—N3—C14—C15	59.0 (3)
C18—C9—C8—C7	180.0 (2)	C13—N3—C14—C15	-176.9 (2)
N1—C9—C8—C10	178.3 (2)	O2-C15-C14-N3	-59.0 (3)
C18—C9—C8—C10	-0.2 (3)	C15—O2—C16—C17	-57.1 (4)
C11—N2—C10—O1	0.3 (4)	N3—C17—C16—O2	59.1 (4)
C18—N2—C10—O1	-178.3 (2)	C10—N2—C18—C9	-1.7 (3)
C11—N2—C10—C8	-179.8 (2)	C11—N2—C18—C9	179.7 (2)
C18—N2—C10—C8	1.6 (3)	N1—C9—C18—N2	-177.5 (2)
C7—C8—C10—O1	-1.1 (5)	C8—C9—C18—N2	1.0 (3)

C9—C8—C10—O1	179.0 (2)
--------------	-----------

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1W····N3 ⁱ	0.86 (4)	2.15 (4)	2.961 (4)	155 (4)
O1W—H2W···O1 ⁱⁱ	0.87 (4)	1.98 (4)	2.843 (3)	174 (4)
C11—H11B···O1W	0.97	2.47	3.326 (4)	147
Symmetry codes: (i) $x+1$, y , z ; (ii) $-x+1/2$, $y-1/2$, z .				

Fig. 2

